Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 927: 172166, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38575023

ABSTRACT

Previous favorable climate conditions stimulate tree growth making some forests more vulnerable to hotter droughts. This so-called structural overshoot may contribute to forest dieback, but there is little evidence on its relative importance depending on site conditions and tree species because of limited field data. Here, we analyzed remote sensing (NDVI) and tree-ring width data to evaluate the impacts of the 2017 drought on canopy cover and growth in mixed Mediterranean forests (Fraxinus ornus, Quercus pubescens, Acer monspessulanum, Pinus pinaster) located in southern Italy. Legacy effects were assessed by calculating differences between observed and predicted basal area increment (BAI). Overall, the growth response of the study stands to the 2017 drought was contingent on site conditions and species characteristics. Most sites presented BAI and canopy cover reductions during the drought. Growth decline was followed by a quick recovery and positive legacy effects, particularly in the case of F. ornus. However, we found negative drought legacies in some species (e.g., Q. pubescens, A. monspessulanum) and sites. In those sites showing negative legacies, high growth rates prior to drought in response to previous wet winter-spring conditions may have predisposed trees to drought damage. Vice versa, the positive drought legacy found in some F. ornus site was linked to post-drought growth release due to Q. pubescens dieback and mortality. Therefore, we found evidences of structural drought overshoot, but it was restricted to specific sites and species. Our findings highlight the importance of considering site settings such as stand composition, pre-drought conditions and different tree species when studying structural overshoot. Droughts contribute to modify the composition and dynamics in mixed forests.


Subject(s)
Droughts , Forests , Trees , Trees/physiology , Italy , Quercus/growth & development , Quercus/physiology , Climate Change , Pinus/physiology , Pinus/growth & development , Environmental Monitoring , Fraxinus/physiology , Fraxinus/growth & development , Acer/growth & development , Acer/physiology
2.
Environ Res ; 252(Pt 1): 118884, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38582431

ABSTRACT

The impact of air pollution on forests, especially in urban areas, has been increasingly discussed recently. Many pollutants, including heavy metals, are released into the atmosphere from various sources, such as mining, non-ferrous metal processing plants, and fossil fuel combustion. These pollutants can adversely affect not only tree growth but also other species, including humans. This study compared the concentrations of several elements in tree-ring wood from two conifer species (Silver fir, Abies alba; Norway spruce, Picea abies) growing in polluted and unpolluted areas. Two regions in northern Romania (Bicaz and Tarnița) that were subjected to historical pollution changes were selected. Two chemical analyses were used: inductively coupled plasma mass spectrometry (ICP-MS) and X-ray fluorescence spectrometry (XRF). The silver fir trees from the intensively polluted area in the Tarnița region were negatively impacted by industrial pollution: the Mn concentrations were, on average, three times higher in polluted areas than in unpolluted areas (ca. 30 vs. 10 mg kg-1). This finding was consistent for both ICP-MS and XRF analyses. However, in Norway spruce, this difference was found only in the XRF data, which detected Mn concentrations seven times higher in trees from polluted areas than those from unpolluted areas (ca. 700 vs. 100 mg kg-1). In the Tarnița region, Norway spruce accumulated more heavy metals than silver fir, but the most pronounced differences between polluted and unpolluted areas were found in silver fir. The two analytical methods are commonly used to determine metal concentrations in wood, and they complement each other, with ICP-MS having a low detection limit for some elements and XRF having higher detection limits and better accuracy. Each method has its advantages and disadvantages, and the optimal method depends on many factors, such as the type of heavy metal analyzed, its concentration in wood, sample type, cost, analysis time, and sample preparation.

3.
Sci Total Environ ; 926: 172049, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38552974

ABSTRACT

Forests are undergoing increasing risks of drought-induced tree mortality. Species replacement patterns following mortality may have a significant impact on the global carbon cycle. Among major hardwoods, deciduous oaks (Quercus spp.) are increasingly reported as replacing dying conifers across the Northern Hemisphere. Yet, our knowledge on the growth responses of these oaks to drought is incomplete, especially regarding post-drought legacy effects. The objectives of this study were to determine the occurrence, duration, and magnitude of legacy effects of extreme droughts and how that vary across species, sites, and drought characteristics. The legacy effects were quantified by the deviation of observed from expected radial growth indices in the period 1940-2016. We used stand-level chronologies from 458 sites and 21 oak species primarily from Europe, north-eastern America, and eastern Asia. We found that legacy effects of droughts could last from 1 to 5 years after the drought and were more prolonged in dry sites. Negative legacy effects (i.e., lower growth than expected) were more prevalent after repetitive droughts in dry sites. The effect of repetitive drought was stronger in Mediterranean oaks especially in Quercus faginea. Species-specific analyses revealed that Q. petraea and Q. macrocarpa from dry sites were more negatively affected by the droughts while growth of several oak species from mesic sites increased during post-drought years. Sites showing positive correlations to winter temperature showed little to no growth depression after drought, whereas sites with a positive correlation to previous summer water balance showed decreased growth. This may indicate that although winter warming favors tree growth during droughts, previous-year summer precipitation may predispose oak trees to current-year extreme droughts. Our results revealed a massive role of repetitive droughts in determining legacy effects and highlighted how growth sensitivity to climate, drought seasonality and species-specific traits drive the legacy effects in deciduous oak species.


Subject(s)
Quercus , Trees , Quercus/physiology , Droughts , Climate , Seasons , Forests , Climate Change
4.
Curr Biol ; 34(6): 1161-1167.e3, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38325374

ABSTRACT

Wood growth is key to understanding the feedback of forest ecosystems to the ongoing climate warming. An increase in spatial synchrony (i.e., coincident changes in distant populations) of spring phenology is one of the most prominent climate responses of forest trees. However, whether temperature variability contributes to an increase in the spatial synchrony of spring phenology and its underlying mechanisms remains largely unknown. Here, we analyzed an extensive dataset of xylem phenology observations of 20 conifer species from 75 sites over the Northern Hemisphere. Along the gradient of increase in temperature variability in the 75 sites, we observed a convergence in the onset of cell enlargement roughly toward the 5th of June, with a convergence in the onset of cell wall thickening toward the summer solstice. The increase in rainfall since the 5th of June is favorable for cell division and expansion, and as the most hours of sunlight are received around the summer solstice, it allows the optimization of carbon assimilation for cell wall thickening. Hence, the convergences can be considered as the result of matching xylem phenological activities to favorable conditions in regions with high temperature variability. Yet, forest trees relying on such consistent seasonal cues for xylem growth could constrain their ability to respond to climate warming, with consequences for the potential growing season length and, ultimately, forest productivity and survival in the future.


Subject(s)
Tracheophyta , Temperature , Ecosystem , Climate Change , Xylem , Seasons , Trees
5.
Sci Total Environ ; 918: 170539, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38296069

ABSTRACT

We lack understanding of how variable is radial growth of coexisting tree and shrub species, and how growth is constrained by drought depending on site aridity. Here, we compared the radial growth of two widespread and coexisting species, a winter deciduous shrub (Amelanchier ovalis Medik.) and an evergreen conifer tree (Pinus sylvestris L.). We sampled four sites in Northeastern Spain subjected to different aridity levels and used dendrochronological methods to quantify growth patterns and responses to climate variables. The growth of the two species varied between regions, being lower in the driest sites. The first-order autocorrelation (growth persistence) was higher in more mesic sites but without clear differences between species. Tree and shrub growth negatively responded to elevated summer temperatures and positively to spring-summer precipitation and wet conditions. However, negative growth responses of the shrub to drought were only observed in the two driest sites in contrast to widespread responses of the tree. Abrupt growth reductions were common in the drier sites, but resilience indices show that the two species rapidly recovered pre-drought growth levels. The lower growth synchrony of the shrub as compared to the tree can be due to the multistemmed architecture, fast growth and low stature of the shrub. Besides, the high dependency of the shrub growth on summer rainfall can explain why drought limitations were only apparent in the two driest sites. In any case, results point out to the dendrochronological potential of shrubs, which is particularly relevant giving its ability to inhabit woodlands and treeless regions under harsh climatic conditions. Nevertheless, further research is required to elucidate the capacity of shrub species to tolerate drought, as well as to understand how shrubs thrive in water- and cold-limited environments.


Subject(s)
Pinus sylvestris , Pinus , Trees , Droughts , Forests , Seasons , Climate Change
6.
Sci Total Environ ; 912: 169574, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38145669

ABSTRACT

Cork is one of the main non-timber forest products in the world. Most of its production is concentrated in the Iberian Peninsula, a climate change hotspot. Climate warming may lead to increased aridification and reduce cork production in that region. However, we still lack assessments of climate-cork relationships across ample geographical and climatic gradients explicitly considering site aridity. We quantified cork growth by measuring cork ring width and related it to climate variables and a drought index using dendrochronology. Four cork oak (Quercus suber) forests located from north eastern Spain to south western Morocco (31.5-41.5° N) and subjected to different aridity levels were sampled. Warm conditions in spring to early summer, when cork is formed, reduced cork width, whereas high precipitation in winter and spring enhanced it. The response of cork to increased water availability in summer peaked (r = 0.89, p = 0.00002) in the most arid and continental site considering 14-month long droughts. A severe drought caused a disproportionate loss of cork production in this site, where for every five-fold decrease in the drought index, the cork-width index declined by a factor of thirteen. Therefore, site aridity determines the responses of cork growth to the soil water availability resulting from accumulated precipitation during winter and spring previous to cork growth and until summer. In general, this cumulative water balance, which is very dependent on temperature and evapotranspiration rate, is critical for cork production, especially in continental, dry sites. The precipitation during the hydrological year can be used as a proxy of cork production in similar sites. Assessments of climate-cork relationships in the western Mediterranean basin could be used as analogues to forecast the impacts of aridification on future cork production.


Subject(s)
Forests , Quercus , Temperature , Europe , Droughts , Water , Quercus/physiology
7.
Nat Commun ; 14(1): 6616, 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37857605

ABSTRACT

Although the global climate is warming, external forcing driven by explosive volcanic eruptions may still cause abrupt cooling. The 1809 and 1815 Tambora eruptions caused lasting cold extremes worldwide, providing a unique lens that allows us to investigate the magnitude of global forest resilience to and recovery from volcanic cooling. Here, we show that growth resilience inferred from tree-ring data was severely impacted by cooling in high latitudes and elevations: the average tree growth decreased substantially (up to 31.8%), especially in larch forests, and regional-scale probabilities of severe growth reduction (below -2σ) increased up to 1390%. The influence of the eruptions extended longer (beyond the year 1824) in mid- than in high-latitudes, presumably due to the combined impacts of cold and drought stress. As Tambora-size eruptions statistically occur every 200-400 years, assessing their influences on ecosystems can help humankind mitigate adverse impacts on natural resources through improved management, especially in high latitude and elevation regions.

8.
Natl Sci Rev ; 10(10): nwad182, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37671321

ABSTRACT

Despite the importance of species interaction in modulating the range shifts of plants, little is known about the responses of coexisting life forms to a warmer climate. Here, we combine long-term monitoring of cambial phenology in sympatric trees and shrubs at two treelines of the Tibetan Plateau, with a meta-analysis of ring-width series from 344 shrubs and 575 trees paired across 11 alpine treelines in the Northern Hemisphere. Under a spring warming of +1°C, xylem resumption advances by 2-4 days in trees, but delays by 3-8 days in shrubs. The divergent phenological response to warming was due to shrubs being 3.2 times more sensitive than trees to chilling accumulation. Warmer winters increased the thermal requirement for cambial reactivation in shrubs, leading to a delayed response to warmer springs. Our meta-analysis confirmed such a mechanism across continental scales. The warming-induced phenological mismatch may give a competitive advantage to trees over shrubs, which would provide a new explanation for increasing alpine treeline shifts under the context of climate change.

9.
Sci Total Environ ; 896: 165266, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37406690

ABSTRACT

Riparian forests are among the most dynamic but threatened terrestrial ecosystems. Their dynamism and conservation depend on historical changes in river geomorphology, which can be evaluated through changes in channel sinuosity. However, we lack long-term assessments on sinuosity and how they impact riparian forest composition, tree growth and deadwood amount. To fill this research gap, we reconstructed river sinuosity in 14 sites across the middle Ebro basin, north-eastern Spain, using historical aerial photographs taken in 1927, 1956, 1998-2003 and 2014-2015. Relationships between sinuosity, stand composition and deadwood amount and decay degree were calculated. We also reconstructed radial growth of the major tree species (Populus alba, Populus nigra, Fraxinus angustifolia, Salix alba and Ulmus minor) in two sites to evaluate how coupled it was with changes in river flow after dam building. From 1927 to 2015, sinuosity decreased passing from 1.39 to 1.20. The river dynamics were altered in the 1950s and 1960s after dam and dyke building. Sites with high sinuosity values in 1956 corresponded to mature stands with large P. nigra individuals. Sinuosity was negatively related to F. angustifolia (rs = -0.83, p < 0.001) and P. alba (rs = -0.64, p = 0.02) abundance, whereas sites dominated by P. alba and U. minor presented abundant decayed deadwood. A loss of sinuosity and a contraction of the riverbank gradient increased disconnection of active channel from floodplain, with a mixing of more (e.g., P. nigra) and less phreatophytic species (e.g., U. minor). River flow diversion reduced growth and increased the tree-to-tree P. alba growth coherence. Hydrological droughts contributed to growth decline and dieback of U. minor, which is sensitive to spring river flow. Conservation and restoration of riparian forests must consider historical changes in river geomorphology related to human activities.


Subject(s)
Populus , Trees , Humans , Ecosystem , Forests , Rivers , Hydrology
10.
Plants (Basel) ; 12(14)2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37514222

ABSTRACT

Ongoing climatic change is threatening the survival of drought-sensitive tree species, such as silver fir (Abies alba). Drought-induced dieback had been previously explored in this conifer, although the role played by tree-level genetic diversity and its relationship with growth patterns and soil microsite conditions remained elusive. We used double digest restriction-site-associated DNA sequencing (ddRADseq) to describe different genetic characteristics of five silver fir forests in the Spanish Pyrenees, including declining and non-declining trees. Single nucleotide polymorphisms (SNPs) were used to investigate the relationships between genetics, dieback, intraspecific trait variation (functional dendrophenotypic traits and leaf traits), local bioclimatic conditions, and rhizosphere soil properties. While there were no noticeable genetic differences between declining and non-declining trees, genome-environment associations with selection signatures were abundant, suggesting a strong influence of climate, soil physicochemical properties, and soil microbial diversity on local adaptation. These results provide novel insights into how genetics and diverse environmental factors are interrelated and highlight the need to incorporate genetic data into silver fir forest dieback studies to gain a better understanding of local adaptation.

11.
Nat Plants ; 9(7): 1044-1056, 2023 07.
Article in English | MEDLINE | ID: mdl-37386149

ABSTRACT

The benefits of masting (volatile, quasi-synchronous seed production at lagged intervals) include satiation of seed predators, but these benefits come with a cost to mutualist pollen and seed dispersers. If the evolution of masting represents a balance between these benefits and costs, we expect mast avoidance in species that are heavily reliant on mutualist dispersers. These effects play out in the context of variable climate and site fertility among species that vary widely in nutrient demand. Meta-analyses of published data have focused on variation at the population scale, thus omitting periodicity within trees and synchronicity between trees. From raw data on 12 million tree-years worldwide, we quantified three components of masting that have not previously been analysed together: (i) volatility, defined as the frequency-weighted year-to-year variation; (ii) periodicity, representing the lag between high-seed years; and (iii) synchronicity, indicating the tree-to-tree correlation. Results show that mast avoidance (low volatility and low synchronicity) by species dependent on mutualist dispersers explains more variation than any other effect. Nutrient-demanding species have low volatility, and species that are most common on nutrient-rich and warm/wet sites exhibit short periods. The prevalence of masting in cold/dry sites coincides with climatic conditions where dependence on vertebrate dispersers is less common than in the wet tropics. Mutualist dispersers neutralize the benefits of masting for predator satiation, further balancing the effects of climate, site fertility and nutrient demands.


Subject(s)
Reproduction , Trees , Fertility , Seeds , Satiation
12.
Int J Biometeorol ; 67(6): 1017-1030, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37072578

ABSTRACT

Climate warming may induce growth decline in warm-temperate areas subjected to seasonal soil moisture deficit, whereas increasing atmospheric CO2 concentration (Ca) is expected to enhance tree growth. An accurate understanding of tree growth and physiological processes responding to climate warming and increasing Ca is critical. Here, we analyzed tree-ring stable carbon isotope and wood anatomical traits of Pinus tabuliformis from Qinling Mountains in China to understand how lumen diameter (LD) determining potential hydraulic conductivity and cell-wall thickness (CWT) determining carbon storage responded to climate and Ca. The effects of climate and Ca on intrinsic water-use efficiency (iWUE) were isolated, and iWUE values due to only-climate (iWUEClim) and only-CO2 effects (iWUECO2) were obtained. During a low-iWUE period, the influences of climate on earlywood (EW) LD and latewood (LW) CWT prevailed. During a high-iWUE period, CO2 fertilization promoted cell enlargement and carbon storage but this was counteracted by a negative influence of climate warming. The limiting direct effects of iWUEClim and indirect effects of climate on EW LD were greater than on LW CWT. P. tabuliformis in temperate forests will face a decline of growth and carbon fixation, but will produce embolism-resistant tracheids with narrow lumen responding to future hotter droughts.


Subject(s)
Water , Wood , Carbon Dioxide , Climate , Trees , Forests , Carbon , Droughts
13.
Sci Total Environ ; 883: 163680, 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37105474

ABSTRACT

Humans have shaped open oak forests for centuries through pollarding and grazing. Nowadays, these cultural landscapes face the abandonment of their traditional uses and new threats, including rising temperatures and increasing drought stress, especially in southern Europe. We need precise data on the long-term radial growth changes of these oak woodlands to better characterize and preserve them. To fill this research gap, we compared the growth patterns and responses to climate variables and a drought index of three traditionally pollarded deciduous oaks (Quercus subpyrenaica, Quercus faginea, Quercus pyrenaica) and one previously pruned, evergreen oak (Quercus ilex) in central and northeastern Spain. In the three deciduous oaks, we reconstructed radial growth suppressions which were mainly attributed to past pollarding events. Recent post-pollarding growth improvement was transitory but long-term growth enhancement could be maintained by periodic pollarding. Formerly pollarded oaks were old reaching maximum ages of 313 years in the case of Q. faginea. Formerly pruned Q. ilex trees were also old reaching ages of at least 384 years. Peaks in major growth suppressions of Q. faginea sites corresponded to periods of intense timber demand following abrupt socioeconomic changes (land tenure and land use changes, local population growth, wars) such as the 1820s, 1840s, 1910s and 1940s. However, other growth suppressions corresponded to dry periods such as the 1870s and 1950s. Oak growth was constrained by warm-dry conditions in spring and by short- to long-term summer droughts (4-18 months). Pollarding abandonment and increased aridification threaten the survival of such old pollarded oak stands that preserve unique cultural, ecological and biological values.


Subject(s)
Quercus , Humans , Quercus/physiology , Droughts , Climate , Forests , Seasons , Trees/physiology
14.
Ann Bot ; 131(6): 941-951, 2023 07 10.
Article in English | MEDLINE | ID: mdl-36996263

ABSTRACT

BACKGROUND AND AIMS: The vulnerability and responsiveness of forests to drought are immensely variable across biomes. Intraspecific tree responses to drought in species with wide niche breadths that grow across contrasting climatically environments might provide key information regarding forest resistance and changes in species distribution under climate change. Using a species with an exceptionally wide niche breath, we tested the hypothesis that tree populations thriving in dry environments are more resistant to drought than those growing in moist locations. METHODS: We determined temporal trends in tree radial growth of 12 tree populations of Nothofagus antarctica (Nothofagaceae) located across a sharp precipitation gradient (annual precipitation of 500-2000 mm) in Chile and Argentina. Using dendrochronological methods, we fitted generalized additive mixed-effect models to predict the annual basal area increment as a function of year and dryness (De Martonne aridity index). We also measured carbon and oxygen isotope signals (and estimated intrinsic water-use efficiency) to provide potential physiological causes for tree growth responses to drought. KEY RESULTS: We found unexpected improvements in growth during 1980-1998 in moist sites, while growth responses in dry sites were mixed. All populations, independent of site moisture, showed an increase in their intrinsic water-use efficiency in recent decades, a tendency that seemed to be explained by an increase in the photosynthetic rate instead of drought-induced stomatal closure, given that δ18O did not change with time. CONCLUSIONS: The absence of drought-induced negative effects on tree growth in a tree species with a wide niche breadth is promising because it might relate to the causal mechanisms tree species possess to face ongoing drought events. We suggest that the drought resistance of N. antarctica might be attributable to its low stature and relatively low growth rate.


Subject(s)
Climate Change , Trees , Trees/physiology , Forests , Carbon , Droughts , Water
15.
Sci Total Environ ; 858(Pt 2): 159778, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36309267

ABSTRACT

Local differentiation at distribution limits may influence species' adaptive capacity to environmental changes. However, drivers, such gene flow and local selection, are still poorly understood. We focus on the role played by range limits in mountain forests to test the hypothesis that relict tree populations are subjected to genetic differentiation and local adaptation. Two alpine treelines of mountain pine (Pinus uncinata Ram. ex DC) were investigated in the Spanish Pyrenees. Further, an isolated relict population forming the species' southernmost distribution limit in north-eastern Spain was also investigated. Using genotyping by sequencing, a genetic matrix conformed by single nucleotide polymorphisms (SNPs) was obtained. This matrix was used to perform genotype-environment and genotype-phenotype associations, as well as to model risk of non-adaptedness. Increasing climate seasonality appears as an essential element in the interpretation of SNPs subjected to selective pressures. Genetic differentiations were overall weak. The differences in leaf mass area and radial growth rate, as well as the identification of several SNPs subjected to selective pressures, exceeded neutral predictions of differentiation among populations. Despite genetic drift might prevail in the isolated population, the Fst values (0.060 and 0.066) showed a moderate genetic drift and Nm values (3.939 and 3.555) indicate the presence of gene flow between the relict population and both treelines. Nonetheless, the SNPs subjected to selection pressures provide evidences of possible selection in treeline ecotones. Persistence in range boundaries seems to involve several selective pressures in species' traits, which were significantly related to enhanced drought seasonality at the limit of P. uncinata distribution range. We conclude that gene flow is unlikely to constrain adaptation in the P. uncinata rear edge, although this species shows vulnerability to future climate change scenarios involving warmer and drier conditions.


Subject(s)
Pinus , Spain , Pinus/genetics , Trees , Forests , Climate Change , Genetic Drift
16.
Sci Total Environ ; 857(Pt 1): 159239, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36208754

ABSTRACT

Extreme climate events such as late spring frosts (LSFs) negatively affect productivity and tree growth in temperate beech forests. However, detailed information on how these forests recover after such events are still missing. We investigated how LSFs affected forest cover and radial growth in European beech (Fagus sylvatica L.) populations located at different elevations at four sites in the Italian Apennines, where LSFs have been recorded. We combined tree-ring and remote-sensing data to analyse the sensitivity and recovery capacity of beech populations to LSFs. Using daily temperature records, we reconstructed LSF events and assessed legacy effects on growth. We also evaluated the role played by elevation and stand structure as modulators of LSFs impacts. Finally, using satellite images we computed Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI) and LAI (Leaf Area Index) to evaluate the post-LSF canopy recovery. The growth reduction in LSF-affected trees ranged from 36 % to 84 %. We detected a negative impact of LSF on growth only during the LSF year, with growth recovery occurring within 1-2 years after the event. LSF-affected stands featured low vegetation indices until late June, i.e. on average 75 days after the frost events. We did not find a clear relationship between beech forest elevation and occurrence of LSFs defoliations. Our results indicate a high recovery capacity of common beech and no legacy effects of LSFs.


Subject(s)
Fagus , Trees , Remote Sensing Technology , Climate Change , Forests
17.
Int J Biometeorol ; 66(8): 1711-1723, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35672588

ABSTRACT

Alteration of forest by climate change and human activities modify the growth response of trees to temperature and moisture. Growth trends of young forests with even-aged stands recruited recently when the climate became warmer and drier are not well known. We analyze the radial growth response of young conifer trees (37-63 years old) to climatic parameters and drought stress employing Pearson correlations and the Vaganov-Shashkin Lite (VS-Lite) model. This study uses tree rings of six species of conifer trees (Pinus teocote, Pinus pseudostrobus, Pinus pinceana, Pinus montezumae, Pinus ayacahuite, and Taxodium mucronatum) collected from young forests with diverse growth conditions in northern and central Mexico. Seasonal ring growth and earlywood width (EW) were modeled as a function of temperature and soil moisture using the VS-Lite model. Wet and cool conditions in the previous winter and current spring enhance ring growth and EW production, mainly in sensitive species from dry sites (P. teocote, P. pseudostrobus, P. pinceana, and P. montezumae), whereas the growth of species from mesic sites (P. ayacahuite and T. mucronatum) shows little responsiveness to soil moisture. In P. ayacahuite and T. mucronatum, latewood growth is enhanced by warm summer conditions. The VS-Lite model shows that low soil moisture during April and May constrains growth in the four sensitive species, particularly in P. pinceana, the species dominant in the most xeric sites. Assessing seasonal ring growth and combining its response to climate with process-based growth models could complement xylogenesis data. Such framework should be widely applied, given the predicted warming and its impact on young forests.


Subject(s)
Pinus , Tracheophyta , Adult , Aged , Climate Change , Droughts , Forests , Humans , Mexico , Middle Aged , Seasons , Soil
18.
Nat Commun ; 13(1): 2381, 2022 05 02.
Article in English | MEDLINE | ID: mdl-35501313

ABSTRACT

The relationships that control seed production in trees are fundamental to understanding the evolution of forest species and their capacity to recover from increasing losses to drought, fire, and harvest. A synthesis of fecundity data from 714 species worldwide allowed us to examine hypotheses that are central to quantifying reproduction, a foundation for assessing fitness in forest trees. Four major findings emerged. First, seed production is not constrained by a strict trade-off between seed size and numbers. Instead, seed numbers vary over ten orders of magnitude, with species that invest in large seeds producing more seeds than expected from the 1:1 trade-off. Second, gymnosperms have lower seed production than angiosperms, potentially due to their extra investments in protective woody cones. Third, nutrient-demanding species, indicated by high foliar phosphorus concentrations, have low seed production. Finally, sensitivity of individual species to soil fertility varies widely, limiting the response of community seed production to fertility gradients. In combination, these findings can inform models of forest response that need to incorporate reproductive potential.


Subject(s)
Forests , Seeds , Fertility , Reproduction , Seeds/physiology , Trees
19.
Plant Cell Environ ; 45(8): 2292-2305, 2022 08.
Article in English | MEDLINE | ID: mdl-35598958

ABSTRACT

Pathogenic diseases frequently occur in drought-stressed trees. However, their contribution to the process of drought-induced mortality is poorly understood. We combined drought and stem inoculation treatments to study the physiological processes leading to drought-induced mortality in Norway spruce (Picea abies) and Scots pine (Pinus sylvestris) saplings infected with Heterobasidion annosum s.s. We analysed the saplings' water status, gas exchange, nonstructural carbohydrates (NSCs) and defence responses, and how they related to mortality. Saplings were followed for two growing seasons, including an artificially induced 3-month dormancy period. The combined drought and pathogen treatment significantly increased spruce mortality; however, no interaction between these stressors was observed in pine, although individually each stressor caused mortality. Our results suggest that pathogen infection decreased carbon reserves in spruce, reducing the capacity of saplings to cope with drought, resulting in increased mortality rates. Defoliation, relative water content and the starch concentration of needles were predictors of mortality in both species under drought and pathogen infection. Infection and drought stress create conflicting needs for carbon to compartmentalize the pathogen and to avoid turgor loss, respectively. Heterobasidion annosum reduces the functional sapwood area and shifts NSC allocation patterns, reducing the capacity of trees to cope with drought.


Subject(s)
Picea , Pinus sylvestris , Pinus , Basidiomycota , Carbon , Droughts , Picea/physiology , Pinus sylvestris/physiology , Plant Leaves/physiology , Trees , Water/physiology
20.
Nat Commun ; 13(1): 2015, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35440102

ABSTRACT

The mechanistic pathways connecting ocean-atmosphere variability and terrestrial productivity are well-established theoretically, but remain challenging to quantify empirically. Such quantification will greatly improve the assessment and prediction of changes in terrestrial carbon sequestration in response to dynamically induced climatic extremes. The jet stream latitude (JSL) over the North Atlantic-European domain provides a synthetic and robust physical framework that integrates climate variability not accounted for by atmospheric circulation patterns alone. Surface climate impacts of north-south summer JSL displacements are not uniform across Europe, but rather create a northwestern-southeastern dipole in forest productivity and radial-growth anomalies. Summer JSL variability over the eastern North Atlantic-European domain (5-40E) exerts the strongest impact on European beech, inducing anomalies of up to 30% in modelled gross primary productivity and 50% in radial tree growth. The net effects of JSL movements on terrestrial carbon fluxes depend on forest density, carbon stocks, and productivity imbalances across biogeographic regions.


Subject(s)
Fagus , Air Movements , Carbon , Climate Change , Forests
SELECTION OF CITATIONS
SEARCH DETAIL
...